Core shrinkage covariance estimation for matrix-variate data

نویسندگان

چکیده

Abstract A separable covariance model can describe the among-row and among-column correlations of a random matrix permits likelihood-based inference with very small sample size. However, if assumption separability is not met, data analysis may misrepresent important dependence patterns in data. As compromise between unstructured estimation, we decompose into component complementary ‘core’ matrix. This decomposition defines new that makes use parsimony interpretability model, yet fully describes matrices are non-separable. motivates type shrinkage estimator, obtained by appropriately shrinking core matrix, adapts to degree population

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint mean and covariance estimation with unreplicated matrix - variate data ∗

It has been proposed that complex populations, such as those that arise in genomics studies, may exhibit dependencies among observations as well as among variables. This gives rise to the challenging problem of analyzing unreplicated high-dimensional data with unknown mean and dependence structures. Matrixvariate approaches that impose various forms of (inverse) covariance sparsity allow flexib...

متن کامل

On a Class of Shrinkage Priors for Covariance Matrix Estimation

We propose a flexible class of models based on scale mixture of uniform distributions to construct shrinkage priors for covariance matrix estimation. This new class of priors enjoys a number of advantages over the traditional scale mixture of normal priors, including its simplicity and flexibility in characterizing the prior density. We also exhibit a simple, easy to implement Gibbs sampler for...

متن کامل

Shrinkage Estimation of the Power Spectrum Covariance Matrix

We introduce a novel statistical technique, shrinkage estimation, to estimate the power spectrum covariance matrix from a limited number of simulations. We optimally combine an empirical estimate of the covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test our technique on N-body simulations and evaluate its performance...

متن کامل

Covariance shrinkage for autocorrelated data

The accurate estimation of covariance matrices is essential for many signal processing and machine learning algorithms. In high dimensional settings the sample covariance is known to perform poorly, hence regularization strategies such as analytic shrinkage of Ledoit/Wolf are applied. In the standard setting, i.i.d. data is assumed, however, in practice, time series typically exhibit strong aut...

متن کامل

A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.

Inferring large-scale covariance matrices from sparse genomic data is an ubiquitous problem in bioinformatics. Clearly, the widely used standard covariance and correlation estimators are ill-suited for this purpose. As statistically efficient and computationally fast alternative we propose a novel shrinkage covariance estimator that exploits the Ledoit-Wolf (2003) lemma for analytic calculation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Royal Statistical Society Series B-statistical Methodology

سال: 2023

ISSN: ['1467-9868', '1369-7412']

DOI: https://doi.org/10.1093/jrsssb/qkad070